(U)SimMonitor: A New Malware that Compromises the Security of Cellular Technology and Allows Security Evaluation

DR. C. NTANTOGIAN¹, DR. C. XENAKIS¹, DR. G. KAROPOULOS²

¹DEPT. OF DIGITAL SYSTEMS, UNIVERSITY OF PIRAEUS

²DEPT. OF INFORMATICS AND TELECOMMUNICATIONS, UNIVERSITY OF ATHENS

At a glance

- Cyber-criminals increasingly focus on smartphones
- (U)SimMonitor is both a malware and a security analysis tool for Android and iPhone
- Collects data like: user identities, encryption keys, location data and network parameters
- Stealthy operation
- Impact:
 - User identification
 - Movement track
 - Disclosure of phone calls and data sessions
 - Reveals network security policies

Outline

- The status with mobile devices
- Mobile malware
- Motivation for this work
- (U)SimMonitor:
 - Functionality
 - Architecture
 - Prerequisites
 - Detection
 - Impact criticality
 - White hat usage

Mobile devices under attack

Nowadays, cyber attacks are shifting to mobile devices

- 1. Always on and connected
- 2. Valuable and critical data
- 3. Processing and storage resources equivalent to PC
- 4. High penetration

Connection-enabled mobile devices

- GSM
- 3G
- LTE
- Wifi
- Bluetooth
- NFC

Valuable data on mobile devices

- Emails & documents (pdf, doc, etc.)
- Photos & videos
- Geolocation information
- Contacts and other lists
- SMS messages
- Critical applications (i.e., m-banking, m-wallet, m-VISA, VPN, cloud storage & services, password managers, etc.)
- Phone information (IMEI, IMSI, phone number)

Processing & storage equivalent to PC

High speed CPU

→ Powerful computing

High Penetration of mobile devices

Emergence of mobile malware

• The increase of mobile malware exceeded this of PC malware

PC and Mobile Malware Growth Rate

Statistics of mobile malware

New Mobile Malware

Source: McAfee Labs, 2015.

Mobile malware evolution

Motivation of this work

- In general, we can observe that mobile malware target and exploit
 - the characteristics of the mobile OS
 - to perform a variety of malicious actions

- To the best of our knowledge, <u>there is no mobile malware</u> that targets the <u>baseband modem</u> of <u>mobile phones</u> to breach:
 - the privacy of mobile users
 - the security of cellular networks

What is the Baseband modem?

Smartphone contain at least two CPUs:

- 1. The **application processor** that runs the applications
- 2. The **baseband processor** that handles connectivity to the cellular network.

(U)SimMonitor

- We have designed and implemented a new type of mobile malware for both Android and iPhone devices, which attacks the baseband modems
- It is capable of stealing <u>security credentials</u> and <u>sensitive information</u> of the <u>cellular technology</u>
 - permanent and temporary **identities**, encryption keys, location of users, etc.

Github:

https://github.com/SSL-Unipi/U-SIMonitor

(U)SimMonitor functionality

- It reads via AT commands security related and sensitive data from USIM/SIM card
 - Encryptions keys used in the mobile network (Kc, Kc_{GPRS}, CK, IC)
 - Key thresholds, ciphering indicator
 - Identities, TMSI, P-TMSI, IMSI
 - Network type, network provider
 - Location area identity, Routing area identity (LAI, RAI)
 - Cell ID
- The extracted data is uploaded to a server, deployed from the attacker

(U)SimMonitor Architecture

(U)SimMonitor Prerequisite

- (U)SimMonitor requires root privileges in order to execute AT commands
- (U)SimMonitor delivers a payload
 - Exploits discovered vulnerabilities to automatically obtain root permissions
 - Provides privilege escalation
- Many devices are already rooted

(U)SimMonitor Properties

- •It runs in the background, while the user can normally operate his/her phone
- •It uses the **least possible resources** of the modem
- •It avoids blocking accidently a voice/data communication

•It has been designed to collect data transparently, without disrupting the proper

operation of the phone

(U)SimMonitor detection

- We tested five popular mobile antivirus (AV) products whether they are capable of recognizing it as a virus
 - None of the tested AVs raised an alarm
- We believe that AV products should include the syntax of AT commands as signatures for their virus databases

(U)SimMonitor Impact and Criticality

- Using IMSI and TMSI identities an attacker can identify the victim user
- Using the location/routing area and Cell-ID parameters an attacker can approximately track victim's
 movements
- Using the obtained encryption keys (i.e., Kc, Kc_{GPRS}, CK, IK) → an attacker may disclose phone calls and data session, regardless of the strength of the employed cryptographic algorithm
- Eliminates the need of breaking the security of the employed cryptographic algorithms → the encryption keys are in the possession of the attacker
- Comprises a threat for all mobile network technologies, even for the security enhanced LTE networks
 it renders inadequate all possible security measures that can be taken from the mobile operator

(U)SimMonitor white hat use

- (U)SimMonitor can be used to capture and analyze the security policy that a cellular operator enforces
 - A functionality which is currently **missing** from Android and iPhone devices.
 - Is ciphering disabled?
 - How often the encryption keys are refreshed?
 - How often the temporary identities are updated?
- Paves the way for quantitative risk assessment

Employed technologies by Greek mobile operators

Op erator	GSM/GPRS	GSM/EDGE	UMTS	HSDPA	UNKNOWN
A	8.38%	1.35%	78.75%	11.5%	0.02%
В	0.17%	27.35%	14.13%	53.72%	4.62%
С	3.43%	2.49%	86.06%	8.02%	0%

AKA execution

	CS domain					
Operator	Static users (consequetive requests for AKA)	Mobile users	Power-off/on	Typical users (max- average use time)		
A	16	6.5%	6.5% in 2G 55% in 3G	1798 - 145 (minutes)		
В	6 SIM 1 U SIM	55% SIM 100% USIM	100% SIM 57% USIM	1380 - 77 (minutes)		
С	10 (average)	57%	100%	1680 - 128 (minutes)		
	PS domain					
Operator	Static users (consequetive requests for AKA)	Mobile users	Power-off/on	Typical users (max- average use time)		
A	1 in 2G 11 in 3G	91%	100% in 2G 16% in 3G	829 - 37 (minutes)		
В	1 in 2G 11 in 3G	83% in 2G 23% in 3G	100% in 2G 18% in 3G	1238 - 90 (minutes)		
С	1	43% in 2G 92% in 3G	100%	940 - 47 (minutes)		

IMSI requests

CS domain					
Operator	Static users	Mobile users	Power-off/on	Typical users	
A	0%	4%	4% in 2G 41% in 3G	1 in a day	
В	0%	41% SIM 55% USIM	55% SIM 0.6% USIM	13 in a day	
С	0%	0.6%	0%	4 in 30 days	
PS domain					
Operator	Static users	Mobile users	Power-off/on	Typical users	
A	0%	0%	0% in 2G 10% in 3G	3 in 30 days	
В	0%	0%	0% in 2G 5% in 3G	2 in 30 days	
С	0%	0%	0% in 2G 10% in 3G	3 in 30 days	

TMSI reallocation

CS domain					
Operator	Static users	Mobile user	Power-off/on	Typical user (max-average use time)	
A	No	100%	100% in 2G 41% in 3G	1513 - 66 (minutes)	
В	No	41% SIM 55% USIM	55% in SIM 100% in USIM	1780 - 89 (minutes)	
C	240 (minutes)	100%	100%	240 - 39 (minutes)	
PS domain					
Operator	Static user	Mobile user	Power-off/on	Typical user (max-average use time)	
A	No	100%	100%	1513 - 66 (minutes)	
В	No	100%	100%	1610 - 77 (minutes)	
C	240 (minutes)	100%	100%	240 - 34 (minutes)	

(U)SimMonitor Video Demo

Contact

Dr. Georgios Karopoulos

Department of Informatics and Telecommunications

University of Athens

http://www.di.uoa.gr/~gkarop

E-mail: gkarop@di.uoa.gr

[1] Christos Xenakis, Christoforos Ntantogian. "Attacking the baseband modem of mobile phones to breach the users' privacy and network security." In *Cyber Conflict: Architectures in Cyberspace* (CyCon), 2015 7th International Conference on, pp. 231-244. IEEE, 2015.

[2] Christos Xenakis, Christoforos Ntantogian, Orestis Panos, (U)SimMonitor: a mobile application for security evaluation of cellular networks, Computers & Security, Available online 31 March 2016, ISSN 0167-4048, http://dx.doi.org/10.1016/j.cose.2016.03.005.