
ROPInjector: Using Return-
Oriented Programming for
Polymorphism and AV Evasion

G. Poulios, C. Ntantogian, C. Xenakis
{gpoulios, dadoyan, xenakis}@unipi.gr

University of Piraeus
Department of Digital Systems

Objective of this research

• We propose Return Oriented Programming (ROP) as
a polymorphic alternative to achieve AntiVirus (AV)
evasion.

+ 

1 Portable Executable 1 well-known shellcode

Many different variations

Background

• A malware is a piece of code

• Usually inside a benign executable (Trojan)

– This will be our type of malware

• Can be written in high level language (C/C++,
VB,…)

• BUT as any code, when compiled, an
executable is created (files with extension .exe)

• This executable file includes a set of machine
instructions  Assembly

Antivirus technology

• An AV uses a combination of two methods:

1. Static analysis (i.e., AVs use a database of
signatures of known malware including MD5
hashes and fixed strings).

2. Dynamic analysis (i.e., when the file is
executed, the AV monitors the behavior of the
executable at runtime to detect any
suspicious action).

• Each method has its own advantages and
drawbacks!

Assembly

• 32 bit CPU has many registers:

– eax, ebx, ecx, edx

• Add eax, 1  eax=eax +1

• Sub eax, 1  eax=eax-1

• Mov eax, 4  eax=4

Example 1

Add eax, 1
Add eax, 6
Sub eax, 3
Mov eax, 3
Add eax, 2
Mov ecx, 2
Add ecx, 4
Sub eax, 7
Add eax, 4
Mov eax, 2
Add eax, 10
Mov ebx, 6

Sub eax, 7
Mov ebx, 6
Add eax, 6

Benign executable

Malware (detected by AV)

Sub eax, 7
Mov eax, 6
Add eax, 6

AVs detect it ! But not
all of them!!

Example 2

Add eax, 1
Add eax, 6
Sub eax, 3
Mov eax, 3
Add eax, 2
Sub eax, 1
Mov ecx, 2
Add ecx, 4
Sub eax, 7
Add eax, 4
Mov eax, 2
Mov ebx, 6

Sub eax, 7
Mov ebx, 6
Add eax, 6

Benign executable

Malware (detected by AV)

Code that executes with the correct
sequence the three assembly

instructions

Return
Oriented
Programming
(ROP)!

Example 3

Add eax, 1
Add eax, 6
Sub eax, 3
Mov eax, 3
Add eax, 2
Sub eax, 1
Mov ecx, 2
Add ecx, 4
Sub eax, 7
Add eax, 4
Mov eax, 2
Mov ebx, 6

Sub eax, 7
Mov ebx, 6
Add eax, 6

Benign executable

Malware (detected by AV)

Code to execute with the correct
sequence the three assembly

instructions

Polymorphism!

Our Tool: ROPInjector

Benign exe Malware shellcode
\xfc\xe8\x89\x00\x00\...

ROPInjector

Carrier exe

ROP’ed shellcode

Why use ROP for AV evasion?

a) We use borrowed code (i.e., ROP gadgets)

 Does Not raise any suspicion!

b) May transform any given shellcode to a

ROP-based equivalent  Generic

c) May use different ROP chain 

Polymorphism

Challenges for our Tool

1. The new resulting PE should evade
AV detection

2. PE should not be
corrupted/damaged

3. The tool should be generic and
automated

Steps of ROPInjector

1. Analyze the shellcode

2. Analyze the benign PE to find ROP chain

3. Transform the shellcode to an equivalent ROP chain

4. Inject into the PE missing instructions (if required)

5. Patch the PE with ROPed shellcode

STEP 1: Shellcode Analysis

• Aims to obtain the necessary information to safely replace
shellcode instructions with gadgets

• For each instruction, ROPInjector likes to know:

– what registers it reads, writes or sets

– what registers are free to modify

– its bitness (a mov al,X or a mov eax,X ?)

– whether it is a branch (jmp, conditional, ret, call)

• and if so, where it lands

– whether it is a privileged instruction (e.g., sysenter, iret)

– whether it contains a VA reference

– whether it uses indirect addressing mode (e.g., mov [edi+4], esi)

STEP 2: Find ROP chain in PE

1. First, find returns of type:

– ret(n) or

– pop regX

jmp regX or

– jmp regX

2. Then, search backwards for more candidate gadgets

STEP 3: Transform shellcode to ROP chain

• Initially, it translates shellcode instructions to an
Intermediate Representation (IR).

• Next, it translates the ROP gadgets found in PE to an IR.

• Finally, it provides a mapping between the two IRs

– 1 to 1

or

– 1 to many

STEP 3: Intermediate Representation

IR Type (20 in total) Semantics Eligible instructions

ADD_IMM regA += imm add r8/16/32, imm8/16/32

add (e)ax/al, imm8/16/32

xor r8/16/32, 0

cmp r8/16/32, 0

inc r8/16/32

test ra32, rb32 (with ra == rb)

test r8/16/32, 0xFF/FFFF/FFFFFFFF

test (e)ax/al, 0xFF/FFFF/FFFFFFFF

or ra32, rb32 (with ra == rb)

MOV_REG_IMM
.

.

.

mov regA, imm mov r8/16/32, imm8/16/32

imul r16/32, r16/32, 0

xor ra8/16/32, ra8/16/32

and r8/16/32, 0

and (e)ax/al, 0

or r8/16/32, 0xFF/FFFF/FFFFFFFF

or (e)ax/al, 0xFF/FFFF/FFFFFFFF

STEP 3: Mapping examples

• 1-1 mapping example
– Shellcode:

mov eax, 0

– Gadget in PE:
and eax, 0

ret

• 1-many mapping example
– Shellcode:

add eax, 2

– Gadget in PE:
inc eax

ret

 MOV_REG_IMM(eax, 0)

MOV_REG_IMM(eax, 0)

1 to 1
IR

mapping

 ADD_IMM(eax, 2)

 ADD_IMM(eax, 1)

1 to 2
IR

mapping

STEP 4: Gadget Injection

• If the PE does not include the required ROP gadgets

• By simply injecting ROP gadgets would raise alarms

Statistics (presence of successive ret instructions)

• Therefore, ROPInjector inserts ROP gadgets scattered in a
benign looking way avoiding alarms:

– 0xCC caves in .text section of PEs (padding space left by the linker)

– Often preceded by a ret (due to function epilogue)

STEP 5 : Assemble and patch the ROP
chain into the PE

• Step 5: Insert the code that loads the ROP chain into the stack (mainly

PUSH instructions)

• Step 6 patch the new PE: Extends the .text section (instead of adding

a new one), and, then, repair all RVAs and relocations in the PE.

• ROPInjector includes two different methods to pass control to the

ROPed shellcode

– Run first + delay execution via sleep()

– Run last

STEP 6: PE Patching (2/2)

Section .text

[malware code]

jmp-back

jmp-to-malware

[replaced code]

NT Header

AddressOfEntryPoint

.. .

(1)

(2)

(4)

Run first:

Section .text

[malware code]

jmp-to-malware

ExitProcess()

jmp-to-malware

Previous calls to
ExitProcess()

/ exit()

Run last:

(3) sleep()

Evaluation

• ROPInjector is implemented in native Win32 C

• Nine (9) 32-bit popular executables
– firefox.exe, java.exe, AcroRd32.exe, cmd.exe,

notepad++.exe and more

• 2 of the most popular Metasploit payloads
– reverse TCP shell

– meterpreter reverse TCP

• VirusTotal
– at the time it employed 57 AVs

Scenarios

• Various combinations

– Original-file (no patching at all)

– ROPShellocode-Exit (ROP’ed shellcode + run last)

– Shellcode-Exit (intact shellcode passed control

+run last)

– ROPShellcode-d20-Exit (ROP’ed shellcode + run

first with delayed execution for 20 secs)

– Shellcode (intact shellcode)

Evasion rate: reverse TCP shell

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe Acrobat.exe cmd.exe Rainmeter.exe firefox.exe java.exe wmplayer.exe nam.exe notepad++.exe

Ev
as

io
n

 r
at

io

Original file ROP-Exit Exit ROP-d20 Shellcode

Evasion rate: meterpreter reverse TCP

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe Acrobat.exe cmd.exe Rainmeter.exe firefox.exe java.exe wmplayer.exe nam.exe notepad++.exe

Ev
as

io
n

 r
at

io

Original file ROP-Exit Exit ROP-d20 Shellcode

Overall evasion results

• 100% most of the times

• 99.31% on average

1
0

0
%

9
9

,3
1

%

8
8

,9
9

%

8
3

,7
1

%

7
4

,3
3

%
40%

50%

60%

70%

80%

90%

100%

Average evasion ratio

Ev
as

io
n

 r
at

io

Original file ROP-Exit Exit ROP-d20 Shellcode

Enhanced Mitigation Experience Toolkit

• Microsoft's Enhanced Mitigation Experience
Toolkit (EMET) is a freeware security toolkit for
Microsoft Windows .

• It can be used as an extra layer of defense
against malware attacks, after the firewall and
before antivirus software.

• It can be used to detect ROP based exploits.

Thank you!

Questions?

