Data Privacy and GDPR in Open Blockchains

Andreas Koidis

Programize, LLC.

B

(ISC)² Hellenic Chapter

Scope of this presentation

- > Trustless,
- > permissionless,
- > open consensus networks.

not in scope

- > Trusted,
- > permissioned,
- > enterprise blockchains.

What the CRAB?

CRUD	CRAB
<u>C</u> REATE	<u>C</u> REATE
<u>R</u> EAD	<u>R</u> ETRIEVE
<u>U</u> PDATE*	<u>A</u> PPEND*
<u>D</u> ELETE*	<u>B</u> URN*

https://tutorials.bigchaindb.com/crab

Architecture (eg. Healthcare)

- Layer 1 Ethereum
- Layer 2 Sidechains
- Off-chain APIs
- Data Storage Mgmt
- Wallet app (fat client)

Programize, LLC.

Mutability and immutability

- > Immutable storage: Access policies hash & links, Audit trails
- Mutable storage: Access policy operands, Indexes, Metadata, Data
- ➤ Mutable storage can be personal (Offline, Dropbox, Provider, etc.)

$RBAC \rightarrow ABAC$

- Data centric security
- From role-base to attribute-based
- Enables security in hostile environments
- > Opt-in, opt-out, consent
- Rights transfer propagation
- > Audit trails
- Revocation

Policy Creation (PC), Rights Transfer (RT)

Proxy re-encryption

- > Essentially an access control for blockchains
- Operates via smart contracts to manage keys (zk proofs)
- Allows a third-party proxy to transform ciphertexts from one public key to another (using re-encryption keys)
- > Without learning anything about the underlying message

Benefits

- Better privacy
- Data ownership
- Social scalability
- Anonymity

So, which path will you follow?

Thank you

Andreas Koidis

