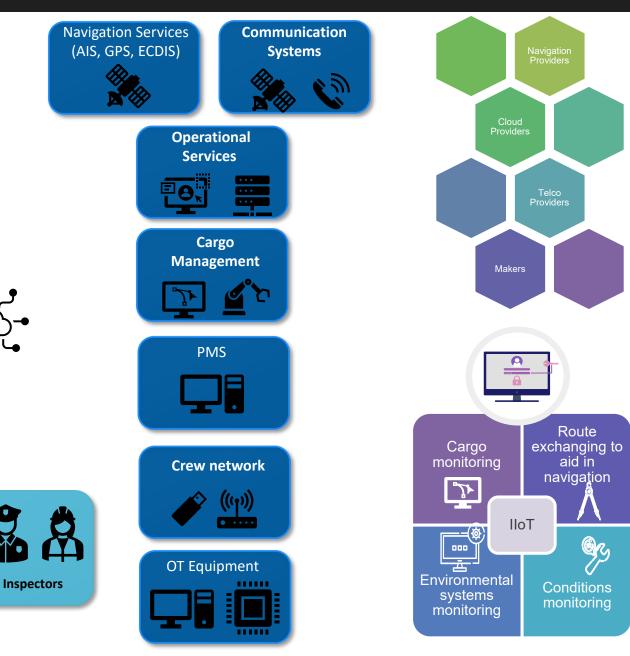


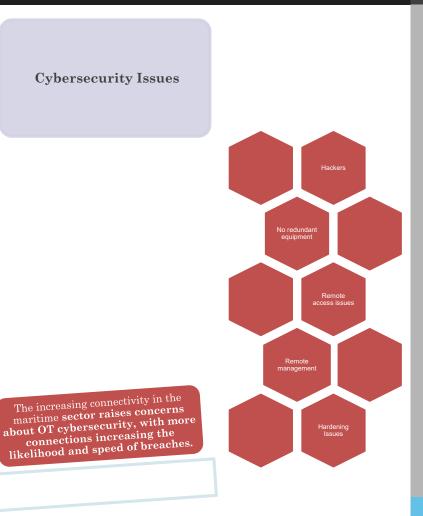
Dr. Theodoros Ntouskas Managing Director, ictPROTECT **OT Risk Management**

14th Infocom Security Conference 10 & 11 April 2024

INFORMATION SECURITY SERVICES


www.ictprotect.com

Vessels: Floating Digital Offices



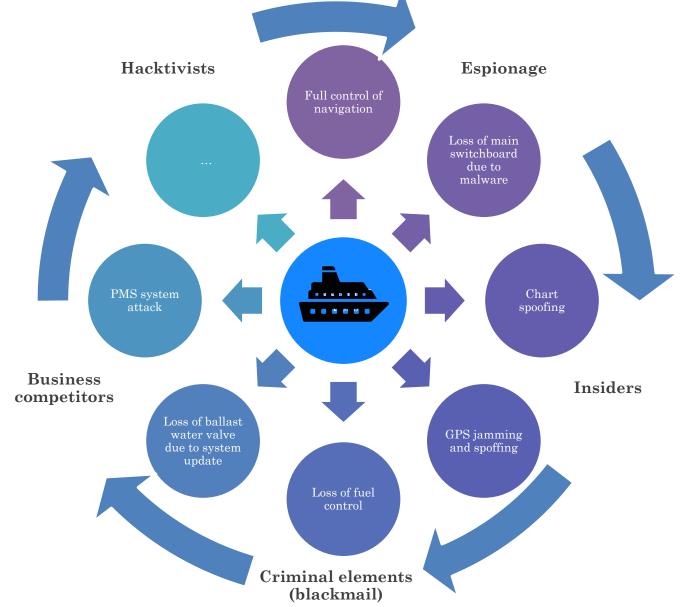
© 2024 | www.ictprotect.com

Connected Technologies: Advantages and Risks

Advances in **digital** and **connected technologies** are transforming the global shipping network, **offering opportunities for greener**, **safer**, **and more efficient operations**.

Digital technologies not only enhance sustainability but also **improve safety by automating complex processes, benefiting ports and sea safety**.

Digital technology is considered as a key enabler for decarbonization plans


Connected technologies are **crucial** for reducing emissions through fleet and route optimization

OT Systems: operate **semiautonomously or fully autonomously**, enhancing efficiency and reducing human intervention.

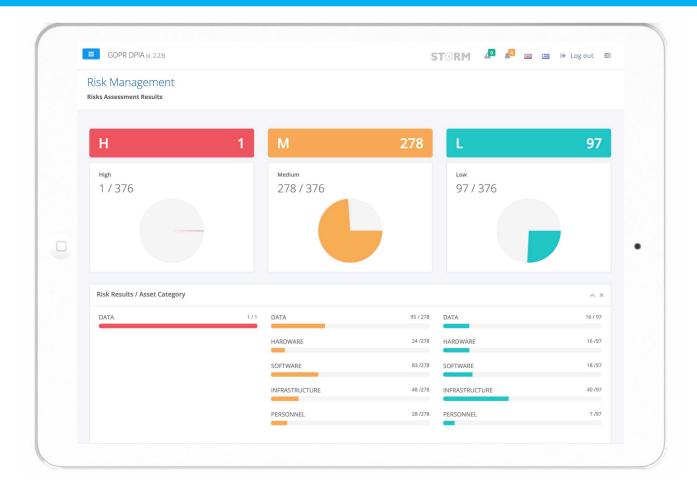
© 2024 | www.ictprotect.com References: "REVIEW OF MARITIME TRANSPORT": https://unctad.org/system/files/official-document/rmt2022_en.pdf DNV: "Maritime Cyber 2023"

Risks and Attack Vectors

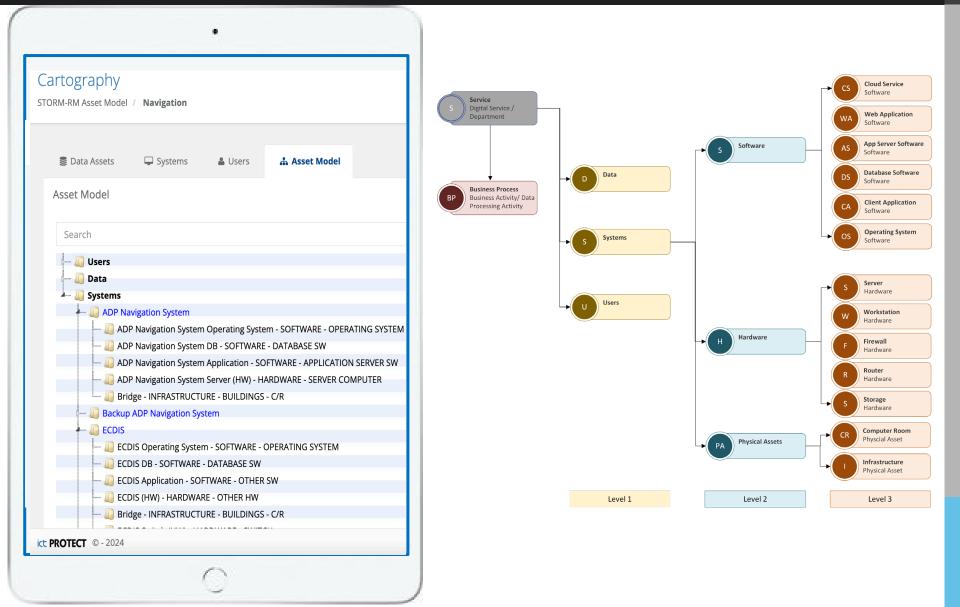
Risk Scenario

THREAT	DESCRIPTION	VULNERABILITY	DESCRIPTION	Proposed Countermeasure
	Control system software or configuration settings modified, producing unpredictable results	Insufficient configuration	Improperly configured systems may leave unnecessary ports and protocols open. These unnecessary functions may contain vulnerabilities that increase the overall risk to the system. Using default configurations often exposes vulnerabilities and exploitable services. All settings should be examined.	Hardening based on best practices (CIS benchmark)
		Critical configurations are not stored or backed up	Procedures should be available for restoring OT/ICS configuration settings in the event of accidental or adversary-initiated configuration changes to maintain system availability and prevent loss of data. Documented procedures should be developed for maintaining OT/ICS configuration settings.	 Procedures should be available for restoring OT/ICS configuration settings in the event of accidental or adversary- initiated configuration changes to maintain system availability and prevent loss of data. Documented procedures should be developed for maintaining OT/ICS configuration settings.
		Slow / lack of updates	Maintaining ICS/SCADA firmware and software up-to-date is not easy, and it can be very complex for critical infrastructure systems, as an update error could cause severe issues on the whole system. Cyber fragility results from applying a change to the system without having tested it beforehand and having foreseen its effects.	Software updates should be monitored and implemented as needed on time (after proper testing)
		SCADA Software features	SCADA applications and software usually provides basic and modest security features. However, these are not always enabled by default, and could act as additional weaknesses if operators are unaware of the need of enabling these features.	Operators should be aware of the need of enabling features.
		Operating System Vulnerabilities	The whole host of normal IT operating system vulnerabilities are present in SCADA systems. The difference from an IT system is that patching may be performed less rigorously. It is usual for a SCADA system operator to have a running system that is expected to perform without interruptions.	It is usual for a SCADA system operator to have a running system that is expected to perform without interruptions.

STORM RISK MANAGEMENT Our Proposed Methodology



Conduct Risk Assessment & Risk Treatment


- -- Identify IT & OT Assets
- -- Identify assets' dependencies
- -- Impact Assessment

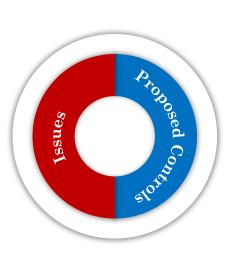
- --Identify Potential Threats
- --Evaluate Vulnerabilities
- --Propose Mitigation Actions

STORM RISK MANAGEMENT Vessel IT&OT Asset Model

ST@RM RISK MANAGEMENT

GDPR DPIA (v. 2.2)	3)			STOF	M 🔎		🖃 🕞 Log	g out
Tasks								
Home / Tasks								
						_		
Overall Status						Q		×
Open Tasks	Completed Tasks		Risk Assessm 1	ent		4		5 /4
5								
Open Comple								
Open Comple Open 5 1 1	ted							^
Open Comple Open S 1 1 5 v records p	ted er page			Search:		Copy CSV	Excel PDF	
Open Comple Open 5 1 1	ted er page ries Title	Li Corr	pany Started		ategory	Assigned	Excel PDF Action	Print
Open Comple Open 5 1 1 5 records p Showing 1 to 5 of 5 ent Priority #	ted er page ries Title	↓î ps, ICT F g	Pany Started Trotect 2021-03-24	Deadline (11 11 11 1 2021-04-24 F		Assigned	Action	Print

Issues & «life jacket»


IT & OT Systems are increasingly exposed against cyber risks.

Cyber risks could be exploited either by **satellite networks**

either by the traditional communication channels

significant impact on all maritime entities affecting international economy

Digital supply chain risks Gartner predicts that by 2025, 45% of organizations worldwide will have experienced attacks on their software supply chains, a three-fold increase from 2021

IT & OT Risk Assessment

Risk Assessment should depict IT & OT dependencies

Control Remote Access

Remote access capabilities must be adequately controlled

Vulnerability Management & Patch Management Processes should be enforced

Incident Management

Incident response procedure must be in place and adequately followed.

Secure Network Architecture

Network architecture should be designed through the most secure and widely used architecture model for ICS/OT systems, the Purdue Model (ISA 99, IEC 62443).

Architecture Levels – Purdue Model

Level 5: Enterprise (Enterprise Zone) - Shore Office Network

- Internet
- Satcom

Level 4: Site Business Planning and Logistics (Enterprize Zone) - Vessel Network

- · Ship Crew WiFi, Ship Guest WiFi
- Bridge Computers, Captain & Engineer Computers
- Monitoring Systems (Ballast, Cargo, Main engine)
- Ship Stability Program
- VDR

Level 3.5 Industrial DMZ

- Firewall
- · Web Proxy (broker service for propulsion, ballast, cargo data)
- WSUS
- · ECDIS Update Gateway
- Remote Desktop Gateway

Level 3: Site Manufacturing Operations and Control (Manufacturing Zone) - Bridge-ECR

- VDR (Data Collecting Unit)
- ECDIS
- · CCR Computer and equipment
- ECR Computer
- · SCADA/Shipboard Integrated Monitoring and Control Systems

Level 2: Area Supervisory Control (Cell / Area Zone) - Bridge-ECR

- Switches
- Firewall
- HMI Propulsion
- HMI Power Management

Level 1: Basic Control (Cell / Area Zone) - Bridge-ECR

- · GPS, PLC, HMI
- CAN bus
- Echosounder

Level 0: Process (Cell / Area Zone) - Bridge-ECR

- Sensors
- Actuators

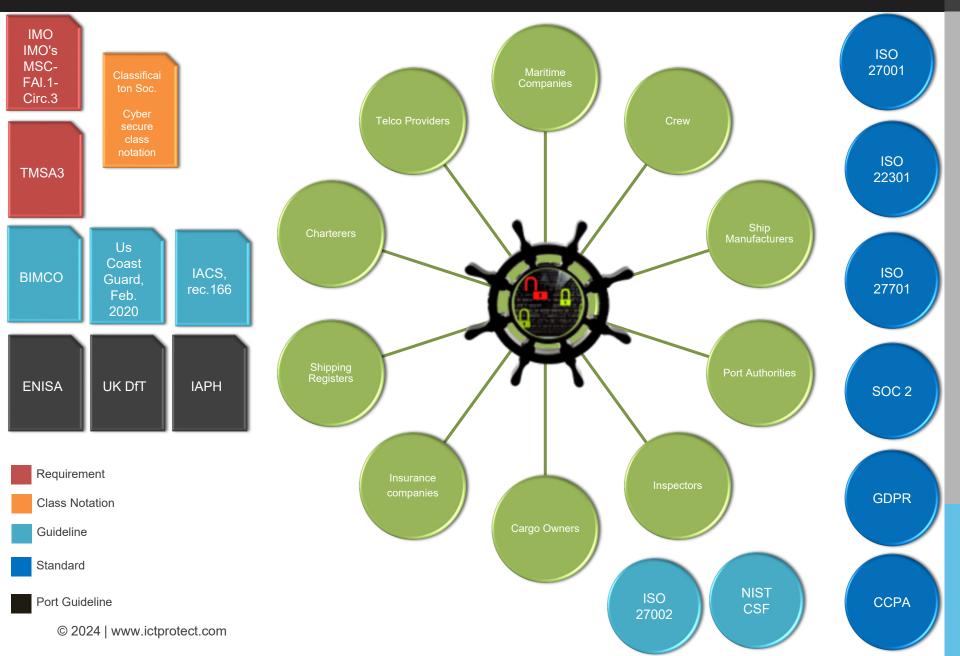
References

- IMO MSC-FAL.1/Circ.3 Guidelines on Maritime Cyber Risk Management, July 2017,
 - https://www.cdn.imo.org/localresources/en/OurWork/Security/Documents/MSC-FAL.1-Circ.3%20-%20Guidelines%20On%20Maritime%20Cyber%20Risk%20Management%20(Secretariat).pdf
- IMO RESOLUTION MSC.428(98) Maritime Cyber Risk Management in Safety Management Systems, June 2017,

 - United States Coast Guard, February 2020, Guidelines for addressing cyber risks at Maritime Transportation Security Act (MTSA) regulated facilities,
 - <u>https://dco.uscg.mil/Portals/9/CG-</u>
 - FAC/Documents/Maritime%20Cyber%20Assessment%20%20Annex%20Guide%20(MCAAG)_released%2023JAN2023.pdf?ver=NE11YUspj_kNa3xRoMd 0TQ%3d%3d
 - $\ \ \underline{https://www.dco.uscg.mil/Portals/9/DCO\%20 Documents/5p/5ps/NVIC/2020/NVIC_01-20_CyberRisk_dtd_2020-02-26.pdf?ver=2020-03-19-071814-023 \\ \ \underline{https://www.dco.uscg.mil/Portals/9/DCO\%20 Documents/5p/5ps/NVIC/2020/NVIC_01-20_CyberRisk_dtd_2020-02-26.pdf?ver=2020-03-19-071814-023 \\ \ \underline{https://www.dco.uscg.mil/Portals/9/DCO\%20 \\ \ \underline{https://www.dco.uscg.mil/Portals/9/DC0\%20 \\ \ \underline{https://www.dco.uscg.mil/Portals/9/DC0\%20 \\ \ \underline{https://www.dco.uscg.mil/Portals/9/DC0\%20 \\ \$
 - <u>https://www.dco.uscg.mil/Our-Organization/Assistant-Commandant-for-Prevention-Policy-CG-5P/Inspections-Compliance-CG-5PC-/Commercial-Vessel-Compliance/CVCmms/</u>
- IACS (International Association of Classification Societies (IACS)) UK, Rec 166 Recommendation on Cyber Resilience New Corr.1 July 2020 Clean,
 - <u>https://www.iacs.org.uk/publications/recommendations/161-180/rec-166-new-corr1/</u> <u>https://iacs.org.uk/download/10965</u>
- OCIMF TMSA3 Tanker Management Self-Assessment, April 2017,
 - <u>https://www.shipnet.no/key-elements-of-tmsa-3/</u>
- BIMCO The Guidelines on Cyber Security Onboard Ships v4,
 - $\bullet \ \underline{https://www.bimco.org/about-us-and-our-members/publications/the-guidelines-on-cyber-security-onboard-ships}$
- BIMCO Cyber Security Workbook for On Board Ship Use, 2nd Edition, 2021,
 - <u>https://www.bimco.org/about-us-and-our-members/publications/cyber-security-workbook</u>
- BIMCO- The Guidelines on Cyber Security Onboard Ships
- IMO ISM Code, 2018 Edition,
 - $\bullet \ \underline{https://www.dohle-yachts.com/wp-content/uploads/2021/05/ISM-Code-2018.pdf}$
- ENISA EU, Port Cybersecurity Good practices for cybersecurity in the maritime sector, November 2019,
 - $\bullet \ \underline{https://www.enisa.europa.eu/publications/port-cybersecurity-good-practices-for-cybersecurity-in-the-maritime-sector}$
 - <u>https://www.enisa.europa.eu/publications/ics-scada-dependencies</u>
- United Kingdom Department of Transport Cyber Security for Ports and Port Systems, January 2020,
 - $\label{eq:https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/859925/cyber-security-for-ports-and-port-systems-code-of-practice.pdf$
- IAPH International Association of Ports and Harbors, Port Community Cyber Security,

 - $\bullet \ \underline{https://sustainableworldports.org/wp-content/uploads/IAPH-Cybersecurity-Guidelines-version-1_0.pdf$
- ISA/IEC 62443 series of standards in order to address the need to design cybersecurity robustness and resilience into industrial automation control systems
 - <u>https://www.isa.org/intech-home/2018/september-october/departments/new-standard-specifies-security-capabilities-for-c</u>

Let's do business


info@ictprotect.com

INFORMATION SECURITY SERVICES

© 2024 | www.ictprotect.com

Commercial Ships & Cybersecurity Requirements

